A Look at Energy Distribution of QE Events in the Antineutrino Data

- goal: show how well energy distribution agrees in data, MC for possible inclusion in PAC talk (Mar 29th)?
 - important to show that we can simulate our \overline{v} data given 25m absorber issues
- QE is best sample for this (high statistics, can reconstruct E_vQE)
- use neutrino mode QE selection and apply to antineutrino mode data ...

Antineutrino Mode QE Selection

- use exact same QE selection as in neutrino mode:
 - event within beam spill (4400-6400 ns)
 - Vhits(1) < 6, Vhits(2) < 6
 - Thits(2) > 200, Thits(2) < 200
 - radius < 500 cm
 - 2 and only 2 subevents (CC event)
 - Michel distance < 100 cm (Michel assoc w/ μ)

standard "pre-cuts"

Stancu-based

QE selection

- if had been applying Fisher cut, then might have argued that same cuts should not apply (but using simpler selection)
 - neutrino mode: $v_{\mu} n \rightarrow \mu^{-} p$
 - antineutrino mode: $\overline{\nu_{\mu}} p \rightarrow \mu^{+} n$

Some of Variables Cut On

(more on this later)

Number of Events

 8772 events pass QE selection in antineutrino mode (have run over all of the data, 1.5 x 10²⁰ POT)

```
- 12% of data taken with no absorber plates in beam - 45% of data with absorber plate #10 in beam - 43% of data with both absorber plates in beam
```

so, 88% of total QE nubar data had some beam obstruction

Event Composition

- 27% of events are predicted to be WS ν_{μ} & 73% are RS $\overline{\nu_{\mu}}$
- according to the Monte Carlo, this sample is:

$$\begin{array}{l} \text{- }53\% \, \overline{\nu_{\mu}} \, \text{QE} \\ \text{- }19\% \, \nu_{\mu} \, \text{QE} \end{array} \right\} \, \begin{array}{l} \text{72\% QE} \\ \text{QE} \end{array}$$

- 15% $\overline{\nu_{\mu}}$ CC π^{-}
- 5% v_u CC π^+
- 3% $\overline{\nu_u}$ QE hyperon production (Λ , Σ -, Σ 0)
- 3% v_{μ} and $\overline{v_{\mu}}$ CC π^0
- 2% other

Kinematic Comparisons

relative norm, MC without 25m absorber plates simulated

muon kinetic energy

muon scattering angle

Muon Angular Distribution

- this is the distribution that can tell us about WS content in the beam
- plot shows our default
 MC predictions (27% WS)
- current WS prediction does not seem far off (consistent w/ Adish/Heather's findings last summer; they can repeat their fits to get exact #'s)

Muon Angular Distribution

- can get some sense of our sensitivity to WS content
- both relatively normalized to the data (1.5 x 10²⁰ POT)

Kinematic Comparisons

relative norm, MC without 25m absorber plates simulated

Neutrino Energy Distribution

• relative norm, MC without 25m absorber plates simulated

- this is type of distribution could show at PAC
- E_v spectrum agreement pretty good despite not having plates simulated
- but we can do better ...

As a Test - Reweight Effect of Absorber

- Geoff is generating new MC samples, but in meantime ...
- reweight $\overline{v_u}$, v_u generated E_v according to Wilking's flux ratios

(example: both plates in)

- reweight 45% of events with plate 10 in beam
- reweight 43% of events with both plates in beam

Estimating Effect of Absorber Plates

MC with no absorber plates:

MC reweighted according to fraction of events with one & both plates in beam:

Sam Zeller, 03/21/07

Estimating Effect of Absorber Plates

MC with no absorber plates:

MC reweighted according to fraction of events with one & both plates in beam:

shows new flux should improve things, new MC will be real test (Geoff)

With Absorber Plate Reweighting

Stancu-based QEs
 (same as RH plot on page 13)

 Reconstruction QEs (using 1-t P-fitter)

Conclusions

- data, MC agreement in antineutrino QE sample looks pretty good (based on 8k events, 1.5 x 10²⁰ POT)
- our wrong-sign predictions are not far off
- indications are that new Monte Carlo with plates simulated should further improve data, MC agreement

Backups

Estimating Effect of Absorber Plates

MC with no absorber plates:

MC reweighted according to fraction of events with one & both plates in beam:

17

QE Model

 however, do <u>not</u> recommend showing such high level plots at PAC presentation (too premature)

8